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Abstract. One may impose to a system with spontaneous broken symmetry, boundary conditions which
correspond to different pure states at two ends of a sample. For a discrete Ising-like broken symmetry,
boundary conditions with opposite spins in two parallel limiting planes, generate an interface and a cost
in free energy per unit area of the interface. For continuum symmetries the order parameter interpolates
smoothly between the end planes carrying two different directions of the order parameter. The cost in
free energy is then proportional to Ld−2 for a system of characteristic size L. The power of L is related
to the lower critical dimension, and the coefficient of this additional free energy vanishes at the critical
temperature. In this note it is shown within a loop expansion that one does find the expected behavior of
this twist free energy. This is a preamble to the study of situations where the broken continuum symmetry
is believed to be more complex, as in Parisi ansatz for the Edwards-Anderson spin glass.

PACS. 64.60.-i General studies of phase transitions

1 Introduction

Spontaneously broken symmetries are characterized by
the existence of several possible pure states. If one im-
poses “twisted” boundary conditions, i.e. different pure
states at two ends of the system, the free energy per unit
volume will be slightly greater than the free energy corre-
sponding to one single pure state over the whole system.

For a simple discrete symmetry, such as the Z2-
symmetry of Ising-like systems, one may consider an
(hyper)-cubic system with up spins in the z = 0 plane,
down spins in the z = L plane and for instance pe-
riodic boundary conditions in the transverse directions
x1, x2, · · ·xd−1. This will generate an interface in the sys-
tem centered around some plane z = z0 and a cost in free
energy

∆F = F↑,↓ − F↑,↑ = σLd−1 (1)

in which the interfacial tension σ(T ) is finite at low tem-
perature, but vanishes at the critical temperature as

σ(T ) = σ0

(
Tc − T
Tc

)λ
. (2)

As is well-known the power (d−1) of L in (1) implies that
the lower critical dimension of systems with a discrete
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symmetry is equal to one, i.e. there is no ordered phase
unless d is greater than one. Widom [1] has first proposed
the scaling law

λ = (d− 1)ν (3)

in which ν is the correction length exponent

ξ = ξ0

(
Tc − T
Tc

)ν
. (4)

The corresponding amplitude relation implies that the
combination

ξd−1
0 σ0 (5)

is universal. All this was studied long ago [2] by renormal-
ization group techniques and (4−d)-expansion. At leading
order the classical (mean field) solution is a kink, of hyper-
bolic tangent shape, interpolating between up and down
spins, and fluctuations are given at one-loop order by the
Fredholm determinant of a one-dimensional Schrödinger
operator in a 1/cosh2(z − z0) potential which, as is well-
known, is solvable analytically.

For more complex spontaneously broken symmetries,
continuum symmetries, or replica-symmetry breaking, the
situation is less trivial, and it it is necessary to look into
the problem in some detail in order to understand the
lower critical dimension. For a continuum symmetry group
G, broken down to a subgroup H, as in N -vector mod-
els, one considers the free energy with two different pure
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states in the two planes z = 0 and z = L. For an N -vector
model one considers for instance an order parameter uni-
form along the vector (1, 0, · · · , 0) in the z = 0 plane, and
uniform but rotated by an angle θ0 in the plane z = L,
i.e. lying along the vector (cos θ0, sin θ0, 0, · · · , 0). There
again one expects a cost in free energy

∆F = σ(T, θ0)Ld−2 (6)

in agreement with a lower critical dimension equal to two,
and with a “twist” energy σ(T, θ0) (or spin stiffness con-
stant) vanishing as θ2

0 for small θ0, (the ratio σ/θ2
0 is the

helicity modulus defined by Fisher et al. [3]), and vanish-
ing at Tc [4,5] like (Tc−T )ν(d−2). If it is quite elementary
to verify these statements within mean field theory, not
difficult also to check them in the vicinity of the lower
critical dimension dl = 2 through the non-linear sigma
model [6,7], it is not so simple to examine the problem
below the upper critical dimension du = 4. This note is
thus devoted to this point. Our aim in performing this
calculation is to repeat it later for a spin glass. There,
below the temperature of transition, one recovers a bro-
ken continuum symmetry, displayed by Parisi’s ansatz [8]
of replica symmetry breaking for the Edwards-Anderson
model, which yields a continuum of schemes with equal
free energy (reparametrization invariance). If the situa-
tion at du = 6 is more or less under control, despite its
complexity [9], the knowledge about dl is poor, although
it is believed to lie between two and three [9,10,12]. If one
imposes again two different schemes at two ends of the
system, one expects [11] a cost in free energy

∆F = σLd−2+η (7)

with some negative anomaly η which would yield a lower
critical dimension dl = 2 − η. The possible presence of
this anomaly requires to compute at least a one-loop cor-
rection to mean field theory. This difficult calculation will
be reported in a subsequent article, and this note sim-
ply aims at showing that already for the well understood
N -vector model, the theory is somewhat involved. The
rest of this note is thus devoted to the N -vector model
below four dimensions, treated through a (φ2)2 field the-
ory and an ε = 4 − d expansion. It is interesting to note
that a direct calculation of the helicity modulus has also
been performed directly in three dimensions, in spite of
the singularities expected from Goldstone massless modes
[15,16]. This has been done by keeping a symmetry break-
ing field until one can let it go safely to zero at the end of
the calculation of this helicity modulus.

2 Mean field theory

The action for the N -vector model in the broken symme-
try domain is

S =
∫ L

0

dz
∫

dd−1x⊥

[
1
2

(∇φ)2 − 1
2
|t|(φ)2 +

g

4
((φ)2)2

]
,

(8)

in which t is proportional to T −Tc. A pure state through-
out the bulk would have a magnetization M whose mag-
nitude is given by

|t| = gM2. (9)

Subtracting the bulk contribution one thus has

∆S =
∫ L

0

dz
∫

dd−1x⊥

[
1
2

(∇φ)2 +
g

4
(φ2 −M2)2

]
.

(10)

The free energy ∆F is the value of the minimum of ∆S
with the boundary conditions

φ(z = 0,x⊥) = M(1, 0, · · · , 0)
φ(z = L,x⊥) = M(cos θ0, sin θ0, 0, · · · , 0). (11)

We fix here the value of the order parameter on the edges,
rather than imposing magnetic fields on the boundaries.
Our partition function will thus be defined with fixed pre-
scribed values of the order parameter on the two edges,
rather than fixing a surface magnetic field and letting the
surface order order parameter fluctuate, as in the work of
Krech [13] for instance. For an N = 1 (scalar) order pa-
rameter, we would have to fix the surface order parameter
to a value slightly smaller than the bulk magnetization,
but for N > 1 one can directly take the modulus of the
surface order parameter equal to the bulk magnetization,
as shown in the mean field solution of the equations of
motion below. It is easy to verify that ∆S is minimum

• when the order parameter remains in the 2-plane of
the two vectors defined by the boundary conditions
• when φ is a function of z-alone, i.e. independent of x⊥.

and one can parametrize the mean field solution as

φ = ρ(z)(cos θ(z), sin θ(z), 0, · · · , 0), (12)

for which

∆S = Ld−1

∫ L

0

dz

[
1
2

(
dρ
dz

)2

+
1
2
ρ2

(
dθ
dz

)2

+
g

4
(ρ2 −M2)2

]
. (13)

The solution will be close to that of an order parameter
uniformly rotating between the two planes with a con-
stant magnitude M , namely ρ(z) = M and θ(z) =

z

L
θ0,

for which ∆F = 1
2θ0

2M2Ld−2. However, although the so-
lution is close to that for large L, we shall need the cor-
rections of order 1/L2 to that simple ansatz, and one has
to solve the variational equations

d
dz

(ρ2θ′) = 0

ρ′′ − ρθ′2 − gρ(ρ2 −M2) = 0. (14)
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Defining the dimensionless variables

τ = z
√

2gM2

r(τ) =
1
M
ρ(z), (15)

the equations of motion are easily cast into the form(
dr
dτ

)2

= ω − v(r)

r2 dθ
dτ

=
√
γ, (16)

with

v(r) =
γ

r2
− 1

4
(1− r2)2. (17)

We can think of the equation for r as an equation of mo-
tion in (r, τ)-plane in which r starts at r = 1 for τ = 0,
decreases down to some r0, then increases and returns to
r = 1 at

τ0 = L
√

2gM2. (18)

The parameters γ and ω have still to be determined by the
boundary conditions. Of course the exact solution of the
equations of motion (16) involves elliptic functions [13].
However it turns out that it is sufficient for our purpose to
consider the regime in which γ is small, which corresponds
to L large compared to the correlation length ξ (or if L/ξ
is finite, corresponds to small θ0). Indeed in that regime
the order parameter has essentially a fixed length r(τ)
close to 1, and

θ2
0

2gM2L2
= γ +O(γ2)

ω = γ +O(γ2)
r = 1− γs(τ) +O(γ2). (19)

The full integration to this order in
θ2

0

2gM2L2
is then easy

and leads to

s(τ) = 1−
cosh | τ02 − τ |

cosh( τ02 )
· (20)

To that same order one finds

∆F =
1
2
θ2

0M
2Ld−2 +O(γ2) =

1
2g
θ2

0L
d−2|t|+O(γ2).

(21)

Let us note that, in mean field, the correlation length
is related to the temperature by

ξ−2 = 2gM2 = 2|t|, (22)

and thus γ is small either because L/ξ is large or because
θ0 is small. The result (21) is thus in agreement with our
expectations

∆F = σLd−2 (23)

with σ = 1
2gθ

2
0|t| vanishing at the critical temperature.

We also verify the scaling law σ(t) ∼ |t|ν(d−2) (which is
expected to be true for d ≤ 4) in four dimensions at which
ν = 1/2 and ν(d− 2) = 1.

As far as mean field theory is concerned the picture is
simple: for θ0ξ/L small, the magnitude of the order param-
eter remains close to M over the whole sample, and its di-
rection smoothly interpolates between the two end planes
with a constant angle gradient. If we went beyond this
simple picture in (20) it is because this will be needed in
the loop expansion when we consider fluctuations around
the mean field.

3 One loop corrections

We now go to dimension d = 4− ε and work to first order
in ε, which requires the calculation of one-loop fluctua-
tions around mean field theory. Instead of an ultra-violet
cut-off given by some lattice spacing, it turns out to be
much more convenient, as often, to use dimensional regu-
larization. The mean field solution is

φc = Mr(z)(cos θ(z), sin θ(z), 0, · · · , 0), (24)

with r and θ described in the previous section. It is conve-
nient to introduce an orthonormal moving frame consist-
ing of the vectors

e1 = (cos θ(z), sin θ(z), 0, · · · , 0)
e2 = (− sin θ(z), cos θ(z), 0, · · · , 0), (25)

plus the (N − 2) fixed unit vectors ea, (a = 3, · · · , N)
perpendicular to the two-plane (1-2). The field φ(z,x⊥)
is then parametrized as

φ(z,x⊥) = (ρ(z) + ψ1(z,x⊥))e1(z)

+ ψ2(z,x⊥)e2(z) +
N∑
a=3

ψa(z, x⊥)ea. (26)

The boundary conditions on those ψa are periodic in the
transverse directions and, since the mean field order pa-
rameter φc is equal to the magnetization on the bound-
aries, one has to impose Dirichlet conditions on the fluc-
tuating fields ψa(z = 0) = ψa(z = L) = 0. A one-loop
calculation requires to keep only the quadratic terms in
ψa of the action. Collecting those terms one finds

S = S0 + S2 (27)
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in which S0 is the mean field contribution and

S2 =
∫ L

0

dz
∫

dd−1x⊥

[
1
2

N∑
1

(∇ψa)2

+
1
2

(
2gM2 +

(
dθ
dz

)2

+ 3gM2(r2(z)− 1)

)
ψ2

1

+
dθ
dz

(
ψ1
∂ψ2

∂z
− ψ2

∂ψ1

∂z

)
+

1
2

((
dθ
dz

)2

+ gM2(r2(z)− 1)

)
ψ2

2

+
1
2
gM2(r2(z)− 1)

N∑
3

ψ2
a

]
. (28)

The one-loop free energy is thus equal to the properly
normalized

∆F = S0 +
1
2

Tr ln
∂2S2

∂ψa(x)∂ψb(y)
· (29)

The normalization will be chosen such that ∆F vanishes
with θ0.

Contribution of the N fluctuating modes

• The transverse modes ψa, a = 3, · · · , N are decoupled
and give a contribution to ∆F equal to

1
2

(N − 2)Tr ln[−∇2 + gM2(r2(z)− 1)] =
1
2

(N − 2)

×
∫

dd−1q⊥
(2π)d−1

Tr ln

[
q2
⊥ −

d2

dz2
+ gM2(r2(z)− 1)

]
.

(30)

On should note that although r2(z)−1 is negative, the
spectrum of − d2

dz2 is bounded below by π2/L2 since
we have Dirichlet boundary conditions on the planes
z = 0 and z = L. Taking the explicit solution (19, 20)
one sees that the spectrum of − d2

dz2 + gM2(r2(z)− 1)
is bounded below by (π2−θ2

0)/L2 and is thus positive.

Therefore a priori one has to compute the Fredholm
determinant of a one-dimensional Schrödinger op-
erator in the complicated potential r2(z). However
for large L, perturbation theory gives very simply
the answer since r2(z) − 1 is of order 1/L2. This
is to be contrasted with a localized Ising interface,
for which there is no small parameter for large L.
The simplification here is due to the fact that the
order parameter turns slowly from one end of the
system to the other one and thus has only small fluc-
tuations in the moving frame that we have introduced.

Then we may replace Tr ln[q2
⊥ − d2

dz2 +
gM2(r2(z) − 1)] (subtracted to vanish at θ0 = 0)

by gM2Tr[q2
⊥ − d2

dz2 ]−1(r2(z) − 1). Expanding on the
basis of the Dirichlet eigenstates of − d2

dz2 , the states√
2
L sin (nπz/L), we obtain the contribution of these

modes, in the large L limit, under the form

− (N − 2)θ2
0L

d−3

∫
dd−1q⊥
(2π)d−1

1
L

×
∫ L

0

dz s(z)
∞∑
n=1

sin2 (nπz/L)
q2
⊥ + (nπ/L)2

·

in which s(z) is the explicit mean field correction (20).
In the large L limit one can replace s(z) by one,
the sum over n by an integral which, combined with
the integral over q⊥, gives the integral L

∫
ddp/p2

which vanishes in dimensional regularization. Those
modes have thus a vanishing contribution to the terms
proportional to Ld−2 of ∆F .

• We now come to the coupled ψ1-ψ2 modes, using again
that r2(z) − 1 and (dθ/dz)2 are of order 1/L2. This
allows one again to use a perturbation expansion about
a massless ψ2-mode and a massive ψ1. After a lengthy,
but elementary calculation, we obtain the contribution
of these two modes to ∆F under the form of a sum of
five terms:

∆F one−loop =
θ2

0

2L2
Tr
(

1
−∇2 + 2gM2

+
1
−∇2

)
− θ2

0

2L2
Tr
(

3
1

−∇2 + 2gM2
s(z) +

1
−∇2

s(z)
)

− 2
θ2

0

2L2
Tr
(

1
(−∇2 + 2gM2)(−∇2)

(− ∂2

∂z2
)
)
. (31)

We leave the detail of the calculations to an appendix
and simply report the result. We have computed the
1/ε pole of this expression, for arbitrary L/ξ and ob-
tained.

∆F =
θ2

0

2g
Ld−2|t|+ 3

8π2ε
θ2

0L
d−2|t|1−ε/2 (32)

(we have kept it under this form since g and |t|ε/2
have the same dimension). In this expression we have
kept the finite (|t| ln |t|) term and neglected the non-
logarithmic terms.

4 Renormalization and scaling

We first note that the pole in 1/ε in (32) is independent
of L/ξ, as it should, since the renormalizations are inde-
pendent of this ratio. Next we note that the limit of ε
going to zero should be finite, provided we perform a cou-
pling constant and mass renormalization (there is no wave
function renormalization at this one-loop order). Taking
the standard one loop result from literature [14] (with the
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appropriate normlization of the coupling constant chosen
in (8)) one has, at one-loop,

1
g

= µ−ε
(

1
gR
− N + 8

8π2ε

)
(33)

for the coupling constant renormalization (µ is an arbi-
trary inverse length scale) and

t = tR

(
1 + gR

N + 2
8π2ε

)
(34)

for the mass (i.e. temperature) renormalization. This gives
a renormalized expression for ∆F in terms of gR and tR
which is finite, as expected, when ε goes to zero:

∆F =
θ2

0

2gR
Ld−2µ−ε|tR|

(
1− 3gR

8π2
ln
|tR|
µ2

)
. (35)

The scaling of the coefficient of θ2
0L

d−2 in the critical re-
gion requires a replacement of gR by the infra-red stable
fixed point

g∗R =
8π2ε

N + 8
+O(ε2), (36)

and the exponentiation(
1− 3gR

8π2
ln
|tR|
µ2

)
→
(
|tR|
µ2

)3g∗R/8π
2

. (37)

Given that the correlation length exponent ν has the ex-
pansion

ν =
1
2

+
N + 2

4(N + 8)
ε+O(ε2), (38)

one verifies to this order that

1− 3g∗R
8π2

= ν(d− 2) (39)

which does yield the expected scaling law for the vanishing
of the twist energy at Tc in the O(N)-model.

5 Final remarks

Although a priori more cumbersome than the calculation
of the interfacial energy for a discrete symmetry, it turns
out that, for a continuum symmetry, it is possible to com-
pute the complicated Fredholm determinant of fluctua-
tions around mean field theory by an expansion in powers
of 1/L which was not available for an interfacial wall. The
calculation involves a description of the mean field solu-
tion in which it is not sufficient to simply assume that the
order parameter rotates with a constant angle gradient
from end to end, with a fixed length equal to the mag-
netization. The calculation presented here may be easily
generalized to any continuum symmetry group G, broken

down spontaneously below a critical temperature to a sub-
group H, with an order parameter in a given irreducible
representation R of G.

This calculation provides an explicit test of the fact
that the renormalizations are the same around any back-
ground solution: in the usual case one expands about
a classical solution which is constant over the sample,
whereas here one expanded around a non-trivial solution,
and yet we found that the same coupling constant and
mass renormalizations did work. We have also verified that
the finiteness of the end result of the free energy for any
ratio L/ξ. However the method that we have followed, has
made use of a small parameter, namely θ0ξ/L. Away from
the critical temperature this parameter is small because
L is large. However if L/ξ is finite our calculation is re-
stricted to small θ0. In the finite L/ξ regime,∆F is a priori
a more complicated function of θ0 for which we have only
determined the first term. Let us stress also that we have
used the ε-expansion, since we wanted to determine the
behavior of the twist free energy near the upper critical
dimension.

Appendix: One-loop divergences

Let us return to the five terms contained in (31) for the
one-loop calculation of ∆F .

•

(a) =
θ2

0

2L2
Tr
(

1
−∇2 + 2gM2

)
. (A.1)

If L goes to infinity first we may simply neglect the
quantization of the longitudinal modes and write

(a) =
θ2

0

2
Ld−2

∫
ddp

(2π)d
1

p2 + 2gM2

= − 1
16π2ε

θ2
0L

d−2(2gM2)1−ε/2 (A.2)

in which it is understood that we have neglected the
terms of order ε0. For finite L/ξ the calculation is much
more involved. Going to the large L limit for the trans-
verse periodic directions, but keeping the quantization
of the longitudinal modes one has

(a) =
θ2

0

2
Ld−3

∫
dd−1q⊥
(2π)d−1

∞∑
n=1

1
q2 + n2π2

L2 + 2gM2

=
θ2

0

8π
Ld−2

∫ ∞
0

dq
qd−2√

q2 + 2gM2

×
[

cothL
√
q2 + 2gM2 − 1

L
√
q2 + 2gM2

]

=
θ2

0

8π
Ld−2(2gM2)1−ε/2

∫ ∞
0

dx
xd−2

√
x2 + 1

×
[
coth l

√
x2 + 1− 1

l
√
x2 + 1

]
, (A.3)
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in which

l = L
√

2gM2 = L/ξ. (A.4)

We now use the identity∫ ∞
0

dx
xd−2

√
x2 + 1

[
coth l

√
x2 + 1− 1

l
√
x2 + 1

]
=∫ ∞

0

dx
xd−2

√
x2 + 1

[
1− 1

lx

]
+
∫ ∞

0

dx
xd−2

√
x2 + 1

×
[
coth l

√
x2 + 1− 1

l
√
x2 + 1

− 1 +
1
lx

]
. (A.5)

The first term of the r.h.s. of (A.5) is elementary and
gives −1/(2ε) plus finite terms. It is easy to see that
the second integral of the r.h.s. of (A.5) is finite when
d→ 4. This proves that the divergent part of (a) is as
expected independent of l = L/ξ.
•

(b) =
θ2

0

2L2
Tr
(

1
−∇2

)
. (A.6)

Again if L goes to infinity first

(b)→ θ2
0

2(2π)d
Ld−2

∫
ddp
p2

(A.7)

which vanishes in the dimensional regularization
scheme.
•

(c) = − 3θ2
0

2L2
Tr
(

1
−∇2 + 2gM2

s(z)
)

= − 3θ2
0

2L2

Ld−1

(2π)d−1

∫
dd−1q⊥

2
L

×
∫ L

0

dz
∞∑
1

(
sin2 nπz/L

q2
⊥ + n2π2/L2 + 2gM2

s(z)
)
.

(A.8)

Again if one lets L go to infinity first one can replace
s(z) by one, the calculations are then elementary and
yield

(c) =
3

16π2ε
(2gM2)1−ε/2θ2

0L
d−2. (A.9)

For finite Lξ one can prove with the help of the explicit
form for s(z) that the divergent part is unchanged.
•

(d) = − θ2
0

2L2
Tr
(

1
−∇2

s(z)
)
. (A.10)

Again it is easy with the same integral representation

(d) = − θ2
0

2L2

Ld−1

(2π)d−1

∫
dd−1q⊥

2
L

×
∫ L

0

dz
∞∑
1

(
sin2 nπz/L

q2
⊥ + n2π2/L2

s(z)
)
, (A.11)

to prove that the leading term, proportional to
Ld−2, multiplies the integral

∫
ddp/p2 which vanishes.

Therefore

(d) = 0 (A.12)

•

(e) = −2
θ2

0

2L2
Tr
(

1
(−∇2 + 2gM2)(−∇2)

(
− ∂2

∂z2

))
= −2θ2

0

L2

Ld−1

(2π)d−1

∫
dd−1q⊥

×
∞∑
1

(
(nπ/L)2

(q2
⊥ + n2π2/L2)(q2

⊥ + n2π2/L2 + 2gM2)

)
,

(A.13)

which, in the large L limit, goes to

(e) = −2θ2
0

L2

Ld

(2π)d

∫
ddp

p2
1

p2(p2 + 2gM2)

= −2θ2
0

L2

Ld

d(2π)d

∫
ddp

1
p2 + 2gM2

, (A.14)

from which one finds easily that

(e) =
1

16π2ε
(2gM2)1−ε/2θ2

0L
d−2. (A.15)

Collecting the results (a) to (e) we end up with (32) of the
third section.
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2. E. Brézin, Sze Shao Feng, Phys. Rev. B 29, 472 (1984).
3. M.E. Fisher, M.N. Barber, D. Jasnow, Phys. Rev. A 8,

1111 (1973).
4. B. Josephson, Phys. Lett. 21, 608 (1966).
5. J. Rudnick, D. Jasnow, Phy. Rev. B 16, 1032 (1977).
6. S. Chakravarty, Phy. Rev. Lett. 66, 481 (1991).
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